\qquad

1. Explain how we know if an infinite series converges or diverges.
2. Find the first 5 terms of the sequence:
a. $a_{1}=8, a_{n}=a_{n-1}-3$
b. $j_{n}=3(n-1)^{2}$
c. $k_{n}=\frac{4}{n+2}$
3. Find an explicit formula for the nth term of the following sequences:
a. $-7,-1,5,11, \ldots$
b. $3,6,12, \ldots, 768$
c. $a_{4}=135, a_{7}=3645$ (geometric, ends at $7^{\text {th }}$ term)
4. For the sequences in $\# 3$, write the sum of the series in sigma notation.
5. Are the series geometric or arithmetic? Will each converge or diverge? If it converges, find the sum.
a. $17+27+37+\cdots+417$
b. $\frac{1}{64}+\frac{1}{32}+\frac{1}{16}+\frac{1}{8}+\cdots$
c. $6-3+\frac{3}{2}-\frac{3}{4}+\cdots$

Arithmetic Sequences and Series

$a_{n}=a_{1}+(n-1) d$
$S_{n}=n\left(\frac{a_{1}+a_{n}}{2}\right)=\frac{n}{2}\left[2 a_{1}+(n-1) d\right]$

Geometric Sequences and Series

$$
\begin{aligned}
& a_{n}=a_{1}(r)^{n-1} \\
& S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r} \quad(r \neq 1) \\
& S=\frac{a_{1}}{1-r}
\end{aligned}
$$

6. Determine the type of conic represented by each equation.
a. $y-3 x^{2}+x=8$
b. $y^{2}+x^{2}+x-2 y=8$
c. $-x^{2}+y^{2}+3 x-y=12$
d. $4 y^{2}+3 x^{2}+x-2 y=8$

Graph each conic. Depending on the type, indentify the following properties: vertex (vertices), focus (foci), directrix, axis of symmetry, center, ecentricity, and asypmtotes.
7. $y^{2}-4 x-4=0$
8. $x^{2}-2 x+y^{2}+16 y+40=0$
9. $\frac{x^{2}}{4}+\frac{(y-2)^{2}}{25}=1$
10. $\frac{(y+1)^{2}}{25}-\frac{x^{2}}{16}=1$

Write the equation of each conic described.
11. A circle with center at $(3,7)$ and point on the circle at $(1,-3)$.
12. A parabola that opens to the right with a vertex $(-7,-5)$ and passes through the point $(2,-1)$.
13. An ellipse with vertices at $(8,0)$ and $(-8,0)$ and foci at $(5,0)$ and $(-5,0)$.
14. A hyperbola with center at $(4,-2)$, vertex at $(6,-2)$, and focus at $(7,-2)$.

Evaluate the limits below:
15. $\lim _{x \rightarrow-\infty}(5 x)$
16. $\lim _{x \rightarrow 3^{+}}\left(\frac{1}{x^{2}-9}\right)$
17. $\lim _{x \rightarrow-\infty} \frac{x^{5}+x^{4}+x^{3}+x^{2}+x+1}{x^{3}-6}$
18. $\lim _{x \rightarrow-10} \frac{x^{2}+13 x+30}{x^{2}+18 x+80}$
19. $\lim _{x \rightarrow 2} f(x), f(x)= \begin{cases}-x^{2}+2, & x \neq 2 \\ -5, & x=2\end{cases}$

21. $\lim _{x \rightarrow-3^{+}} \frac{x+2}{x^{2}+5 x+6}$

20. $\lim _{x \rightarrow-\infty} \frac{x+2}{x^{2}+x+1}$

22. Use this graph to answer the limit questions below.

a) $\lim _{x \rightarrow 3^{-}} f(x)$
b) $\lim _{x \rightarrow 3^{+}} f(x)$
c) $\lim _{x \rightarrow 3} f(x)$
d) $f(3)$
e) $\lim _{x \rightarrow 6^{-}} f(x)$
f) $\lim _{x \rightarrow 6^{+}} f(x)$
g) $\lim _{x \rightarrow 6} f(x)$
h) $f(6)$

